A proof of the inequality $latex \varepsilon_{m}\le 2\varepsilon_{moy}$

Given n\ge 14 a positive integer, let’s call the difference between two consecutive potential typical primality radii of n a « Goldbach gap ». There are exactly N_{1}(n) such Goldbach gaps. Let’s denote by \eta(n) the number of distinct Goldbach gaps, and let’s write \varepsilon_{i}, 1\le i\le \eta(n) the i-th such Goldbach gap in the increasing order. Thus \varepsilon_{1}=\varepsilon_{min} and \varepsilon_{\eta(n)}=\varepsilon_{max}. Moreover, let’s denote by w_{i} the multiplicity of \varepsilon_{i}. One has \displaystyle{\sum_{i}^{\eta(n)}w_{i}\varepsilon_{i}=P_{ord_{C}(n)}} and \displaystyle{\sum_{i}^{\eta(n)}w_{i}=N_{1}(n)}. Writing p_{i}:=\dfrac{w_{i}}{N_{1}(n)}, one gets \varepsilon_{moy}=\displaystyle{\sum_{i=1}^{\eta(n)}p_{i}\varepsilon_{i}}. Let’s define s_{i} for i ranging from 1 to \eta(n) so that s_{1}=\dfrac{1}{2}, s_{\eta(n)}=\dfrac{1}{2} and s_{i}=0 if i\not\in\{1,\eta(n)\}. One has \vert\varepsilon_{moy}-\varepsilon_{m}\vert=\vert\displaystyle{\sum_{i}^{\eta(n)}\varepsilon_{i}(p_{i}-s_{i})\vert}=\vert(p_{1}-\dfrac{1}{2})\varepsilon_{1}+(p_{\eta(n)}-\dfrac{1}{2})\varepsilon_{\eta(n)}+\displaystyle{\sum_{i=2}^{\eta(n)-1}p_{i}\varepsilon_{i}}\vert. Hence \vert\varepsilon_{moy}-\varepsilon_{m}\vert\le\displaystyle{\sum_{i=2}^{\eta(n)-1}p_{i}\varepsilon_{i}}, and \vert\varepsilon_{moy}-\varepsilon_{m}\vert\le \varepsilon_{moy}. Therefore \varepsilon_{m}\le 2\varepsilon_{moy}.

Publicités

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s